

Pasture degradation and recovery: an economic perspective

Geraldo B. Martha, Jr.

Sustainable Livestock Sector Development, Restoring Value to Grasslands, Embrapa-Brasília, May 08, 2012

- Pasture degradation;
- Pasture recovery: stocking rates and animal performance;
- Key-steps in analyzing pasture recovery options;
- Integrated Crop-Livestock System;

Concluding remarks;

Pasture Degradation

The Pasture Degradation Process

Pasture Degradation and Cost of Production

After Martha Jr., 2009

1 @ = 30 kg LW

Pasture Degradation and Risk (Net Returns)

Martha (2009).

Pasture renovation: stocking rates and animal performance

Animal Productivity in Pastures

Animal performance (time to slaughter)

Heavier weaned calves

High post-weaning LWG

Focus on Animal Performance: Heavier Calves

Heavier weaned calves

Age to slaughter (120 kg LW/hd/yr)

Animal and Economic Performance

Economic effects of weaning weight

Animal p	erformance	LW (kg) at weaning					
kg/cab/ano	Slaughter (mo.)	180	200	220	240		
		TR - (variable costs+deprec.), (R\$/hd)					
224	24	328,80	358,80	388,80	418,80		
180	28	208,80	238,80	268,80	328,80		
150	32	88,80	118,80	178,80	208,80		
128	37	-61,20	-1,20	58,80	118,80		
112	41	-181,20	-121,20	-31,20	28,80		
100	45	-301,20	-211,20	-151,20	-91,20		
90	49	-421,20	-331,20	-271,20	-181,20		

Focus on Animal Performance: Heavier Calves

High post-weaning LWG

Age to slaughter: 200 kg LW (weaning weight)

Animal and Economic Performance

Economic effects of post-weaning LWG

Animal p	erformance		R\$/@				
kg/cab/ano	Slaughter (mo.)	85,00	90,00	95,00	100,00		
		TR - (variable costs+deprec.), (R\$/hd)					
224	24	243,87	328,80	413,73	498,67		
180	28	123,87	208,80	293,73	378,67		
150	32	3,87	88,80	173,73	258,67		
128	36	-116,13	-31,20	53,73	138,67		
112	40	-236,13	-151,20	-66,27	18,67		
100	44	-356,13	-271,20	-186,27	-101,33		
90	48	-476,13	-391,20	-306,27	-221,33		

Increase stocking rate

Focus on Stocking Rates

Fertilized pastures

Crop-pasture rotations

Economic Issues in Pasture Fertilization

	Pará	Mato Grosso	São Paulo
Land price (R\$/ha)	1500	3000	7000
Bull price (R\$/@)	53	56,5	64
Calf price (R\$/hd)	350	373	422
Calf / bull ratio	2,5	2,5	2,5
Fertilizer cost (R\$/t)	775	685	635

Fonte: Barros et al. (2004)

Economic Issues in Pasture Fertilization

0,83 AU/ha

1,20 AU/ha

1,50 AU/ha

São Paulo

R\$ 179,00/ha

R\$ 209,00/ha

R\$ 229,00/ha

Fonte: Barros et al. (2004)

Key-steps in analyzing pasture recovery options

Assessing Agricultural Technologies

- a) to provide a detailed description of the technology or knowledge;
- b) to determine which technology will be replaced, clarifying the advantages and disadvantages of the new technology compared to the one currently in use in farm;
- c) to detail the systems where the new technology can be applied and the need for (and the extent of) changes/adaptations in the current system;
- d) to inform the costs of production of the new technology compared to the one in use that this new technology is supposed to replace, including price and weather risks;

Alves, 2001

Assessing Agricultural Technologies

- e) to inform the new technology's potential response to modern inputs;
- f) to inform if there are restrictions for adopting the new technology in terms of capital acquisition costs, education/training of the farmer, knowledge about technical service and credit limitations;
- g) to identify the environmental impact of the new technology;
- h) when applicable, to separate private and social costs and benefits.

Integrated Crop-Livestock System

The Opportunity Cost of ICLS

$$TR_{ICLS} - (TC_{ICLS} + NR_{Esp.}) > 0$$

TR_{ICLS} = total revenue in ICLS;

TC_{ICLS} = total cost in ICLS;

 $NR_{Esp.}$ = net return in specialized system (ex. cattle or soybean);

Martha Jr. et al. (2011).

Effect of the soybean price (R\$/bag) and animal productivity in ICLS

		Soybean price (R\$/bag)						
		25,00	30,00	35,00	40,00	45,00	50,00	55,00
Animal productivity in ICLS (kg LWG/ha)	268,5	107,07	-14,19	-135,46	-256,72	-377,99	-499,26	-620,52
	358,0	214,75	93,49	-27,78	-149,05	-270,31	-391,58	-512,84
	447,5	321,42	200,15	78,89	-42,38	-163,64	-284,91	-406,18
	537,0	429,10	307,83	186,57	65,30	-55,97	-177,23	-298,50
	626,5	536,78	415,51	294,24	172,98	51,71	-69,55	-190,82
	716,0	643,45	522,18	400,91	279,65	158,38	37,12	-84,15

Martha Jr. et al. (2011).

Concluding Remarks

Production Functions, Average and Marginal Yields

Economic Targets

Brazilian Emissions of GHG

	G	TΡ	GWP		
Gás	2005	Participação 2005	2005	Participação 2005	
	Gg	%	Gg	%	
CO ₂	1.637.905	87,2	1.637.905	74,7	
CH ₄	90.534	4,8	380.241	17,3	
N ₂ O	147.419	7,8	169.259	7,7	
HFC-125	139	0,0	350	0,0	
HFC-134a	126	0,0	2.966	0,1	
HFC-143a	398	0,0	353	0,0	
HFC-152a	0,0175	0,0	24	0,0	
CF ₄	1.245	0,1	805	0,0	
C ₂ F ₆	233	0,0	95	0,0	
SF ₆	1.031	0,1	602	0,0	
Total	1.879.029	100	2.192.601	100	

MCT (2010).

The Challenge Ahead

World's biggest meat-eaters

Carbon trading price
EU Emissions Trading Scheme, € per tonne

20
15
10
5
10
2011 2012

Source: Thomson Reuters

The Economist (2012).

- A lag between adoption and the realization of productivity benefits may create an adoption threshold, especially when a farmer is uncertain about future productive benefits or when he highly discounts future benefits. Farmers must have access to adequate financing to avoid exacerbating this threshold effect; (Antle & Diagana, 2003)
- Successful scaling-up depends upon multi-stakeholder approaches.
 Knowledge exchange, capacity development, technology transfer and well-functioning input and market chains are key-components to foster the adoption of sustainable technologies.

geraldo.martha@embrapa.br +55 61 3448-1734

