Grassland degradation – a global perspective

The case of greenhouse gas mitigation

Richard Conant

Colorado State University
and
International Livestock Research Institute

Carbon flow in grassland ecosystems

1. Grassland soil C stocks are substantial.

Poor grassland management practices Low fertility

Overgrazing

Inefficient forage use

Soil organic matter

Erosion

Improved management practices

Reverse overgrazing

Sowing legumes/ improved species

matter

Irrigation

Fertilization

conceptual framework

- 1. Grassland soil C stocks are substantial.
- 2. Management impacts carbon stocks C stocks are susceptible to loss
- 3. Carbon lost from grassland systems can be regained through changes in management
- 4. Improved management practices can increase soil carbon stocks

Carbon flow in grassland ecosystems

5.1Bha → 730Mha converted to cropland

~415Pg C (in top 20cm) -> ~at least 30 PgC lost due to conversion to cropland

technical potential for sequestration is large

What do we know?

- 1. Grassland soil C stocks are substantial.
- 2. Management impacts carbon stocks C stocks are susceptible to loss
- 3. Carbon lost from grassland systems can be regained through changes in management
- 4. Improved management practices can increase soil carbon stocks
- 5. Technical potential for sequestration in grasslands is large

limited knowledge about costs/benefits

Exhibit 1

Global GHG abatement cost curve beyond business-as-usual – 2030

Note: The curve presents an estimate of the maximum potential of all technical GHG abatement measures below €60 per tCO₂e if each lever was pursued aggressively. It is not a forecast of what role different abatement measures and technologies will play.

Source: Global GHG Abatement Cost Curve v2.0

NPP_{sim} at grazing level that best matched LADA NPP

Soil organic carbon (somtc) at grazing level that best matched LADA NPP

Soil organic carbon (somtc) at grazing level with maximum NPP

Net C stocks don't always decline

Restoring value to grasslands

- quantifying benefits
 - 1. The potential for carbon sequestration driven by restoration of degraded grasslands is substantial
 - 2. Opportunities vary as a function of type and severity of degradation.
 - 3. Restoration seems likely to be very challenging in some rangeland carbon benefits may be small (even negative), costly, and slow to realize.

