Environmental issues of intensive livestock production

The rationale behind the choice of nutrient and energy recovery from manure as a focus area

Pierre Gerber
Seoul National University, 25 April 2012
OUTLINE

• Trends in the sector
• Environmental implications
• Rationale for this thematic area
• Potential lines of intervention
Meat consumption

Source: Alexandratos, 2011
Estimated distribution of livestock production systems

FAO, 2006
Estimated distribution of industrialized produced pig populations. Livestock’s Long Shadow, 2006

Globally - 900,000,000 hogs

FAO, 2006
Total 60,000,000 hogs

Honeyman, Duffy, 2006. Iowa State Univ
Hogs in North Carolina

- 9,800,000 hogs and pigs
- 45% are in 2 of the 100 counties of the state and are on the coastal plain
Estimated soymeal surplus/deficit
N use efficiency in dairy systems

\[y = -6 \times 10^{-8} x^2 + 0.0028x + 2.48 \]

\[R^2 = 0.929 \]

Powel et al., forthcoming
Estimated contribution of livestock to total P_2O_5 supply on agricultural land, in area presenting a P_2O_5 mass balance of more than 10 kg per hectare.

FAO, 2006
GHG emissions from the livestock sector

- Deforestation: 34%
- Enteric fermentation: 26%
- Manure spreading/dropping: 25%
- Chemical N. fert. production
- On-farm fossil fuel
- Deforestation
- OM release from ag. soils
- Pasture degradation
- Processing fossil fuel
- Transport fossil fuel
- Enteric fermentation
- Manure storage/processing
- N fertilization
- Legume production
- Manure spreading/dropping
- Manure indirect emissions

FAO, 2006
Manure management options

Concrete floor
- In house separation
 - "Solid manure"
 - "Liquid manure"
 - Slurry

Partially-slatted floor
- Below-floor temporary storage

Slatted floor
- In house separation
 - "Solid manure"
 - "Liquid manure"
 - Slurry

Collection
- Solid
- Liquid

Composting
- Black soldier fly
- Earthworm
- Drying
- Anaerobic storage

Storage/Process
- Feed
 - Fish, cattle

Fertilizer
- Solid
- Liquid

Soil
- Water
- Fish ponds

Energy

Fertilizer Liquid

Storage/Process
- Composting
- Anaerobic digestion
- Wetlands
- Ponding
- Time of storage
- Cover
- Additives
- Aerobic digestion
- Aerobic / Anaerobic
- Other

Utilisation
- By hand
 - High value and low handling cost

Low value and high handling cost
- Digested effluent value > effluent value (ammonia emission are more important with digested effluent)

Value ?

Mineral fertilizer
Nutrient balances on pig farms

Thailand
Ratchaburi Province
N=205

Vietnam
Thaibinh, Dongnai Provinces : N=420
Towards zero discharge: recovery of nutrient and energy from animal manure

- **Issue:** Discharge of animal manure into the environment causes pollution of soils and water resources, as well as the emission of noxious gases
 - total amounts of nutrients in livestock excreta > synthetic fertilizers
 - 50 to 90 percent of the nutrients contained in feed are excreted in manure
 - livestock is reacting to a rapidly changing socio-economic context through structural changes
IMPACT OF INTENSIVE LIVESTOCK ON CLIMATE AND WATER AND SOIL POLLUTION - Who cares?

- Civil society
- Governments
- Producers that have direct interest
 - Farmers aware of environmental consequences or exposed to complaints of local communities
 - Exporters with specific trade agreements
Towards zero discharge: recovery of nutrient and energy from animal manure

• **Proposition:** move towards zero discharge and recovery of nutrient and energy from animal manure

• **Rationale**
 - manure management technologies and practices broadly developed but not adopted
 - remove barriers and create the conditions for adoption

Nutrient and energy recovery: any activity that uses the nutrients or energy embedded in animal manure
IMPACT OF LIVESTOCK ON WATER AND SOIL POLLUTION
Nutrient flows in farming systems

Adapted from Saleem, 1998
Changes in manure management practices, what can make it happen?

Government
- Policy framework
 - Law
 - Regulatory enforcement
 - Financial incentives

Extension services
- Awareness
- Technical capacity

Farmers associations
- Technical capacity
- Recognition

Available technical options

General public
- Social/moral pressure
- Accountability

Market
- Incentive for “clean” products

Motivation

Economic and technical changes

FARMER
- Manure management practices
Policy options to address soil and water pollution issues

— Given the determinant role of livestock geography...
 ➤ Establish zoning laws preventing further concentration and encourage growth in less saturated areas

— Given the inadequacy and low enforcement of current regulations...
 ➤ Improve current standards (discharge, recycling, trading)
 ➤ Foster enforcement of rules and regulation

— Given that large units tend to generate more pollution per unit of output, and that small farmers have limited investment capacities...
 ➤ Enforce regulations for large units first
 ➤ Provide subsidies to smallholders who implement effective manure management practice
Policy options to address soil and water pollution issues

- Given the number small and middle size production units and the limited public resources ...

  Focus on voluntary approaches, develop training and extension and “Good Agricultural practices”

- Given the strong reactivity of the sector to economic conditions

  enforce market based measures such as taxes and subsidies
Review of public policies

<table>
<thead>
<tr>
<th>Nutrient recovery (N & P use efficiency)</th>
<th>On-farm level</th>
<th>Territorial level</th>
<th>National level</th>
</tr>
</thead>
</table>
| **Discharge standards** | • Discharge standards
• **Subsidies** for manure management technologies
• **Taxes** on N/P surplus
• **Extension** and capacity building
• **Awareness raising** | • **Cap and trade** system
• Support to **manure transportation**
• Specific **fertilization norms** in sensitive areas
• **Livestock production zoning** (Land access) | • **Fertilization standards**
• **Mandatory practices**: field cover crop during winter, intermediate crops |

| Energy recovery | • **Subsidies** for anaerobic digesters
• **Extension** and capacity building | • **Promote business model** for biogas industry: consider every inputs and outputs (e.g. US Dairy) | • **Price support** for electricity from biogas plants
• **Taxes** on fossil fuel
• **Promote** machines fueled with biogas
• **Promote carbon credits market** |
Effect of policies to control nutrient-based pollution from animal production in Denmark

Mikkelsen et al., 2009
Effect of policies to control nutrient-based pollution from animal production in Denmark

Mikkelsen et al., 2009