Yield gaps and natural resource use efficiency

Alejandro Nin-Pratt

Closing the efficiency gap in natural resource use, FAO - Rome, 2-4 April 2012
Motivation

• Global demand for meat is projected to increase by 85% from 2005/2007 to 2050 and this demand will have to be met from an increasingly scarce natural resource base.

• So:
 ▫ Do we need to increase natural resource use efficiency?
 ▫ How do we define it?
 ▫ How do we measure it?
Outline

• Conceptual framework for the discussion:
 ▫ Production possibilities
 ▫ Technical change, efficiency and productivity
 ▫ Yields and yield gaps
 ▫ Economic efficiency and allocation efficiency, maximizing profits and minimizing costs

• Implications for the use of natural resource efficiency measures

• Conclusions
Production Possibility Space (PPS): Set of all feasible input combinations that can produce y

$X_1 =$ Fertilizer per kg of y

$X_2 =$ Land per kg of y
Technical Change and the technological frontier

X1=Fertilizer per kg of y

X2=Land per kg of y
Technical efficiency

\[X_1 = \text{Fertilizer per kg of y} \]

\[X_2 = \text{Land per kg of y} \]

Efficiency of \(A' \) = \(\frac{OA}{OA'} < 1 \)

Efficiency of \(A \) = \(\frac{OA}{OA} = 1 \)
Efficiency change

\[dE = \frac{OA}{OA'} \times \frac{OA''}{OA} = \frac{OA''}{OA'} \]
Yields and the yield gap

- $X_1 =$ Fertilizer per kg of y
- $X_2 =$ Land per kg of y

Max. Yield

Average yield

Yield gap
Economic efficiency

\[X_1 = \text{Fertilizer per kg of } y \]

\[\text{(Cost of } y/\text{Pf}) \]

Total cost in kgs of fertilizer

\[\text{Cost of } y = Pf \times X_1 + Pl \times X_2 \]

\[X_1 = \left(\frac{\text{Cost of } y}{\text{Pf}}\right) - \left(\frac{\text{Pl}}{\text{Pf}}\right) \times X_2 \]

Lower cost
Economic efficiency: change in relative prices

Cost of y = Pf'*X1 + Pl'*X2

\[X_1 = \frac{\text{Cost of y}}{Pf'} - \frac{Pl' \cdot X_2}{Pf'} \]

Lower land of price wrt fertilizer
Economic efficiency: South Asian prices

X₁=Fertilizer per kg of y

Economic Efficiency of B = OBₑ/OB < 1
Economic efficiency: Brazilian prices

- \(X_1 = \text{Fertilizer per kg of y} \)
- \(X_2 = \text{Land per kg of y} \)

Economic Efficiency

\[
\text{Cost}^* = \frac{\text{Brazil's total cost}}{\text{Asia's total cost}} = 1
\]

Economic Efficiency of B = \(OB/OB = 1 \)
Implications

- What are the problems with this definition?
 - Natural resource use efficiency is the “optimum” or “minimum” amount of natural resource inputs used to produce a given quantity of output
Natural resource efficiency and the yield gap

\(X_1 = \text{Fertilizer per kg of } y \)

Max. Yield

\(X_2 = \text{Land per kg of } y \)

Cost*

\(\text{O} \)

\(\text{A'} \)

\(\text{F'} \)

\(\text{I} \)

\(\text{II} \)
Conclusions

• Partial measures of efficiency of natural resource use have similar problems to those of a partial productivity measure like “yield”

• Could be useful as a proxy indicator in particular cases:
 • Select the relevant indicator according to the problem at hand
 • Applied within homogeneous agroecological and economic conditions
Conclusions

• Ideally, total factor efficiency measures should be used
• E.g. the material balance condition (Coelli and others) is a multifactor measure that can be used to analyze a wide variety of situations.